Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498752

RESUMO

OBJECTIVE: Growing attention has been paid recently to electrocardiogram (ECG) based obstructive sleep apnea (OSA) detection, with some progresses been made on this topic. However, the lack of data, low data quality, and incomplete data labeling hinder the application of deep learning to OSA detection, which in turn affects the overall generalization capacity of the network. METHODS: To address these issues, we propose the ResT-ECGAN framework. It uses a one-dimensional generative adversarial network (ECGAN) for sample generation, and integrates it into ResTNet for OSA detection. ECGAN filters the generated ECG signals by incorporating the concept of fuzziness, effectively increasing the amount of high-quality data. ResT-Net not only alleviates the problems caused by deepening the network but also utilizes multihead attention mechanisms to parallelize sequence processing and extract more valuable OSA detection features by leveraging contextual information. RESULTS: Through extensive experiments, we verify that ECGAN can effectively improve the OSA detection performance of ResT-Net. Using only ResT-Net for detection, the accuracy on the Apnea-ECG and private databases is 0.885 and 0.837, respectively. By adding ECGAN-generated data augmentation, the accuracy is increased to 0.893 and 0.848, respectively. CONCLUSION AND SIGNIFICANCE: Comparing with the state-of-the-art deep learning methods, our method outperforms them in terms of accuracy. This study provides a new approach and solution to improve OSA detection in situations with limited labeled samples.

2.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431841

RESUMO

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas/genética , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Expansão das Repetições de DNA
3.
Sci Rep ; 14(1): 6543, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503760

RESUMO

Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.


Assuntos
Doenças da Aorta , Aterosclerose , Doenças das Artérias Carótidas , Humanos , Aterosclerose/genética , Artérias , Algoritmos , Proteínas de Ligação a Ácido Graxo
4.
Microorganisms ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543653

RESUMO

Salmonella infection causes serious economic losses, threatens food safety, and is one of the most important diseases threatening meat duck farming. The gut microbiome is critical in providing resistance against colonization by exogenous microorganisms. Studying the relationship between Salmonella and gut microbiota can help us better understand the threat of the pathogenic mechanism of Salmonella and provide a more scientific theoretical basis for its prevention and treatment. This study uses Salmonella Typhimurium as the research object and Cherry Valley meat duck as the model with which to study the impact of Salmonella infection on ducks. In this field trial, 2 × 108 CFUs Salmonella Typhimurium were administered to 3-day-old ducks. After infection, duck viscera were collected to detect the colonization of Salmonella, and cecal contents were collected to analyze the changes in gut microbiota. The results show that Salmonella Typhimurium can colonize ducks three days after infection and alter the gut microbiota composition, mainly by increasing the abundance of Ruminococcaceae and Lachnospiraceae. In conclusion, Salmonella Typhimurium infection significantly alters the intestinal microbiota of ducks and poses a serious public health risk.

5.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526033

RESUMO

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Assuntos
Aterosclerose , Compostos de Boro , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Taurina/metabolismo
6.
Heliyon ; 10(5): e27106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439894

RESUMO

Background: Somatic mutations in epidermal growth factor receptor (EGFR) genes, such as G719X and S768I, and tyrosine kinase inhibitors (TKIs) have been confirmed to be promising for developing new targeted therapies against advanced non-small-cell lung cancer (NSCLC). The G719X and S768I mutations are uncommon and often occur in the form of compound mutations. However, the efficacy of furmonertinib in patients with these uncommon compound mutations has not yet been elucidated. Case presentation: In this study, the G719X/S768I compound mutations were detected in a critically ill NSCLC patient. This patient received furmonertinib for 14 months and successfully responded to the treatment. The present case report highlights the ideal clinical response, with ongoing follow-up. Conclusion: We report the successful treatment of a critically ill NSCLC patient carrying rare compound EGFR G719X and S768I mutations using furmonertinib. To the best of our knowledge, this is the first reported case of a successful furmonertinib treatment of compound EGFR G719X and S768I mutations. Furmonertinib, a third-generation EGFR-TKI, may be effective in controlling the EGFR G719X and S768I compound mutations in NSCLC.

7.
Microbiol Spectr ; 12(4): e0314223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385646

RESUMO

Previous studies have shown that the gut microbiota and its metabolites are associated with the success of organ transplantation. However, the specific changes in the gut microbiota of lung transplant patients remain unclear. Hence, this study aimed to elucidate the interplay between the gut microbiota, metabolome, and lung transplantation outcomes. Using 16S metagenomics sequencing and untargeted metabolic profiling, we conducted a comprehensive analysis of gut microbial and metabolic alterations in lung transplant recipients relative to non-transplant group. Our findings revealed the predominance of Enterococcus and Streptococcus genera within the lung transplant cohort, accompanied by the significant reduction in Bacteroides, Epulopiscium, Faecalibacterium, and Prevotella abundance. In addition, a significant reduction in ATRA (all-trans retinoic acid) levels and suppression of IgA production were observed in lung transplant recipients, which were found to be closely associated with the Enterococcus genus. It was speculated that the association might have implications for the prognosis of lung transplant patients. Notably, the differences in gut microbial composition and metabolomic profiles between successful transplant recipients and those experiencing chronic rejection were not statistically significant. These novel insights shed light on the putative implications of the gut microbiota and metabolome in shaping lung transplantation outcomes, and provide a foundation for future investigations and targeted therapeutic interventions. IMPORTANCE: This study has profound implications for lung transplantation as it uncovers the important role of gut microbiota and metabolome in shaping transplantation outcomes. The identification of dominant bacterial genera, such as Enterococcus and Streptococcus, within the lung transplant cohort, along with the significant decrease in Bacteroides, Epulopiscium, Faecalibacterium, and Prevotella abundance, reveals potential microbial imbalances associated with lung transplantation. In addition, a significant reduction in ATRA (all-trans retinoic acid) levels and suppression of IgA production were observed in lung transplant recipients, which were found to be closely associated with the Enterococcus genus. It was speculated that the association might have implications for the prognosis of lung transplant patients. These findings hold immense clinical significance as they lay the groundwork for future research and targeted therapeutic interventions. Understanding the impact of the gut microbiota and metabolome on lung transplantation outcomes offers promising avenues for improving transplantation patient prognosis.


Assuntos
Microbioma Gastrointestinal , Transplante de Pulmão , Humanos , Metaboloma , Enterococcus , Tretinoína , Imunoglobulina A , RNA Ribossômico 16S
8.
Ecotoxicol Environ Saf ; 272: 116111, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350216

RESUMO

The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1ß (IL-1ß) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1ß and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.


Assuntos
Glicina/análogos & derivados , Lipopolissacarídeos , NF-kappa B , Embrião de Galinha , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like/metabolismo , Galinhas/metabolismo , Solução Salina/toxicidade , Inflamação/induzido quimicamente , Inflamação/veterinária , Homeostase , Zinco/toxicidade
9.
Dalton Trans ; 53(6): 2687-2695, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38226466

RESUMO

The supramolecular crystals, Mn(15-crown-5)(MnCl4)(DMF), (1; 15-crown-5 = 1,4,7,10,13-pentaoxacyclopentadecane), were synthesized via a self-assembly strategy under ambient conditions. Comprehensive characterization of the crystals involved microanalysis for C, H, and N elements, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and single-crystal X-ray diffraction techniques. The results reveal that 1 undergoes a two-step thermotropic and isostructural phase transition at around 217 K and 351 K upon heating. All three phases belong to the same space group (P212121) with analogous cell parameters. These two phase transitions primarily involve the thermally activated ring rotational dynamics of the 15-crown-5 molecule, with only the transition at ca. 351 K being associated with a dielectric anomaly. 1 exhibits intense luminescence with a peak at ∼600 nm and a high quantum yield of 68%. The mechanisms underlying this intense luminescence are likely linked to low-symmetry ligand fields. Additionally, 1 displays phase transition-induced luminescence enhancement behavior, and the possible mechanism is further discussed.

10.
Inorg Chem ; 63(5): 2640-2646, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252082

RESUMO

Organic-inorganic silver halide hybrids show abundant phase transitions and thermochromism. However, it is very rare that silver halides exhibit thermochromism related to thermotropic structure phase transition. Herein, a bromoargentate hybrid, [Pr-dabco]2Ag4Br6 (1) (Pr-dabco+ = 1-propyl-1,4-diazabicyclo-[2.2.2]octan-1-ium), with tetranuclear [Ag4Br6]2- clusters was prepared and characterized by microanalysis, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, and thermogravimetric (TG) and differential scanning calorimetry (DSC) techniques. Interestingly, 1 undergoes an irreversible structure phase transition at ∼436 K in the first heating process, which is accompanied by an abrupt color change from colorless to yellow; however, a reversible color change between pale yellow and yellow is observed in the next heating-cooling cycles. Notably, DSC measurement revealed that a reversible phase transition is associated with the change in color between pale yellow and yellow, while the powder X-ray diffraction (PXRD) patterns corresponding to pale yellow and yellow phases are quite similar to each other. These observations demonstrate that thermochromism in the next heating-cooling runs is associated with a reversible structure phase transition, which perhaps concerns the disorder-order transformation of alkyl chains in the cationic ligand [Pr-dabco]+, and relevant to the anharmonic fluctuations of the Ag-Br and Ag-N bonds, a strong electron-phonon coupling effect is seen within the bromoargentate cluster.

11.
J Ethnopharmacol ; 322: 117278, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37972908

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) belong to different genera of Caprifoliaceae with analogous appearances and functions. Historically, they have been used as herbal medicines to treat various diseases with confirmed wind-heat evacuation, heat-clearing, and detoxification effects. However, the Chinese Pharmacopoeia (2005 Edition) lists LJF and LF under different categories. AIM OF THE STUDY: Few studies have systematically compared the similarities and dissimilarities of LJF and LF concerning their research achievements. This systematic review and comparison of the traditional use, identification, and phytochemical and pharmacological properties of LJF and LF provides valuable insights for their further application and clinical safety. MATERIALS AND METHODS: Related document information was collected from databases that included Web of Science, X-MOL, Science Direct, PubMed, and the China National Knowledge Infrastructure. RESULTS: The chemical constituents and pharmacological effects of LJF and LF were similar. A total of 337 and 242 chemical constituents were isolated and identified in LJF and LF, respectively. These included volatile oils, cyclic ether terpenes, flavonoids, phenolic acids, triterpenoids, and their saponins. Additionally, LJF plants contain more iridoids and flavonoids than LF plants. The latter have a variety of triterpenoid saponins and significantly higher chlorogenic acid content than LJF plants. Pharmacological studies have shown that LJF and LF have various anti-inflammatory, antiviral, antibacterial, anti-endotoxic, antioxidant, anti-tumor, anti-platelet, myocardial protective, and hepatoprotective effects. CONCLUSIONS: This review was undertaken to explore whether LJF and LF should be listed separately in the Chinese Pharmacopoeia in terms of their disease prevention and treatment strategies. Although LJF and LF showed promising effects, their action mechanisms remains unclear. Specifically, their impact on gut microbiota, gastrointestinal tract, and blood parameters requires further investigation. These studies will provide the foundation for scientific utilization and clinical/non-clinical applications of LJF and LF, and the maximum benefits from their mutual use.


Assuntos
Botânica , Medicamentos de Ervas Chinesas , Lonicera , Extratos Vegetais , Saponinas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Lonicera/química , Flavonoides
12.
IEEE J Biomed Health Inform ; 28(2): 1043-1053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37930925

RESUMO

Sleep staging is essential for assessing sleep quality and diagnosing sleep disorders. However, sleep staging is a labor-intensive process, making it arduous to obtain large quantities of high-quality labeled data for automatic sleep staging. Meanwhile, most of the research on automatic sleep staging pays little attention to pediatric sleep staging. To address these challenges, we propose a semi-supervised multi-scale arbitrary dilated convolution neural network (SMADNet) for pediatric sleep staging using the scalogram with a high height-to-width ratio generated by the continuous wavelet transform (CWT) as input. To extract more extended time dimensional feature representations and adapt to scalograms with a high height-to-width ratio in SMADNet, we introduce a multi-scale arbitrary dilation convolution block (MADBlock) based on our proposed arbitrary dilated convolution (ADConv). Finally, we also utilize semi-supervised learning as the training scheme for our network in order to alleviate the reliance on labeled data. Our proposed model has achieved performance comparable to state-of-the-art supervised learning methods with 30% labels. Our model is tested on a private pediatric dataset and achieved 79% accuracy, 72% kappa, and 75% MF1. Therefore, our model demonstrates a powerful feature extraction capability and has achieved performance comparable to state-of-the-art supervised learning methods with a small number of labels.


Assuntos
Fases do Sono , Sono , Humanos , Criança , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Análise de Ondaletas
13.
Biochem Biophys Res Commun ; 692: 149344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070275

RESUMO

CD81 is a cell surface transmembrane protein of the tetraspanin family, which critically regulates signal transduction and immune response. Growing evidence has shown that CD81 plays important roles in tumorigenesis and influences immunotherapy response. Here, combining bio-informatics and functional analysis, we find that CD81 is a risk factor in lung squamous cell carcinoma (LUSC), whereas a protective factor in lung adenocarcinoma. In LUSC with high expression of CD81, the autophagy and JAK-STAT signaling pathway are activated. Meanwhile, the expression level of CD81 is negatively correlated with tumor mutational load (TMB), microsatellite instability (MSI), and neoantigen (NEO). Furthermore, patients with LUSC and high expression of CD81 do not respond to immunotherapy drugs, but can respond to chemotherapy drugs. Importantly, depletion of CD81 suppresses the proliferation of LUSC cell, and enhances the sensitivity to cisplatin. Our findings suggest that CD81 represents a potential target for cisplatin-based chemotherapy in patients with LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cisplatino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Tetraspanina 28/metabolismo
14.
J Ethnopharmacol ; 322: 117507, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122910

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlong Jianji (SLJJ) is a Chinese herbal compound composed of traditional medicines for supplementing Qi, nourishing Yin, promoting blood circulation, and removing obstruction in channels. It is widely used to treat idiopathic pulmonary fibrosis (IPF) in China. However, the underlying mechanism of SLJJ remains unclear. AIM OF THIS STUDY: To elucidate the efficacy and mechanisms of SLJJ in the treatment of IPF through in vivo and in vitro experiments. MATERIAL AND METHODS: 84 Wistar rats were randomly and equally divided into 7 groups: the control group (CTRL), the sham operation group (SHAM), the model group (IPF), the low dose of SLJJ group (L-SLJJ), the middle dose of SLJJ group (M-SLJJ), the high dose of SLJJ group (H-SLJJ), and the pirfenidone group (PFD). The rats in the CTRL, SHAM, and IPF groups were given normal saline each time for 28 days; the SLJJ groups were given Shenlong Jianji (9 g kg-1·d-1, 18 g kg-1·d-1, 36 g kg-1·d-1), and pirfenidone was administered as a sequential dose. After 28 days, the general condition of the rats was evaluated, and samples were collected. The lung coefficient was measured. The pathological changes of lung in each group were observed by H&E staining and Masson staining. α-SMA, collagen 1, and E-cadherin proteins were detected by immunohistochemistry. α-SMA, collagen 1, vimentin, E-cadherin, N-cadherin, TGF-ß1, smad2, and smad3 proteins were detected by WB in vivo.In vitro, A scratch test was used to assess the ratio of cell migration. α-SMA, vimentin, E-cadherin, and N-cadherin protein levels were evaluated by a cellular immunofluorescence assay. TGF-ß1/smads signaling pathway was detected by WB. HPLC-Q-TOF/MS analysis was used to identify the active compounds in the SLJJ. Molecular docking determined the free binding energy of the compound with the TGF-ß1 protein. RESULTS: SLJJ significantly improved the respiratory symptoms, heart rate, mental state, and food intake of IPF group rats and decreased the lung coefficient. In the IPF group, inflammatory cells were infiltrated, and the thickened alveoli wall and alveoli collapse were shown, while significantly alleviating pathological changes in the SLJJ and PFD groups. Masson staining showed that SLJJ and PFD decreased the collagen expression. Immunohistochemical results showed that the expressions of α-SMA, collagen 1, and N-cadherin decreased in the SLJJ and PFD groups, while E-cadherin increased significantly compared with the IPF group. SLJJ regulates TGF-ß1/smads signaling pathway proteins in vivo. SLJJ decreased the ratio of migration in HFL-1 cells; SLJJ reduced the fluorescence intensity of α-SMA, vimentin, and N-cadherin and increased the fluorescence intensity of E-cadherin in primary rat lung (PRL) fibroblast cells and HFL-1 cells. WB results showed that SLJJ significantly down-regulated α-SMA, Vimentin, N-cadherin, TGF-ß1, smad2, and p-smad2/3 proteins expression and up-regulated E-cadherin protein expression in vitro, whereas SRI-011381 (a TGF-ß1 agonist) antagonized the effects of SLJJ. CONCLUSION: SLJJ inhibits idiopathic pulmonary fibrosis. The TGF- ß1/Smads signaling pathway can be the target of SLJJ, which inhibits fibroblast-to-myofibroblast transformation and is expected to be a new drug for the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Vimentina , Simulação de Acoplamento Molecular , Ratos Wistar , Fibroblastos , Transdução de Sinais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Colágeno/metabolismo , Caderinas/metabolismo
15.
Braz J Med Biol Res ; 56: e13140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088675

RESUMO

To date, there have been three common methods for sampling the cerebral ischemic border zone in a rat model of transient middle cerebral artery occlusion (tMCAO): the "two o'clock method", the "diagonal method", and the "parallel line method". However, these methods have their own advantages and limitations. Here, we propose a modified technique (the "rectangular method") for sampling the ischemic border zone. A rat tMCAO model was prepared under the support of a compact small animal anesthesia machine. Cerebral blood flow was monitored by high-resolution laser Doppler to control the quality of modeling, and 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used for cerebral infarction location assessment. Superoxide dismutase 2 (SOD2), cysteinyl aspartate specific proteinase (caspase)-3, caspase-9, and heat shock protein 70 (HSP70) were used to verify the reliability and reproducibility of the rectangular method. The expression of biomarkers (SOD2, caspase-3, caspase-9, and HSP70) in the traditional (two o'clock method after TTC staining) and modified (rectangular method) groups were increased. There were no significant differences between the groups. The rectangular method proposed herein is based on a modification of the diagonal method and parallel line method, which could provide a directly observable infarct borderline and a sufficient sampling area for subsequent experimental operations regardless of the cerebral infarct location. The assessed biomarkers (SOD2, caspase-3, caspase-9, and HSP70) demonstrated the reliability and reproducibility of the rectangular method, which may facilitate inter-laboratory comparisons.


Assuntos
Isquemia Encefálica , Infarto da Artéria Cerebral Média , Ratos , Animais , Caspase 3 , Caspase 9 , Reprodutibilidade dos Testes , Biomarcadores , Modelos Animais de Doenças , Isquemia Encefálica/metabolismo
16.
Mol Neurobiol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097915

RESUMO

Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.

17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37933958

RESUMO

This study aimed to investigate the effects of diets supplemented with 25-hydroxycholecalciferol [25-(OH)D3] and additional vitamin E on growth performance, antioxidant capacity, bone development, and carcass characteristics at different stocking densities on commercial broiler farms. A total of 118,800 one-day-old Arbor Acres broilers were assigned to a 2 × 2 factorial treatment consisting of two dietary vitamin levels (5,500 IU vitamin D3 and 60 IU vitamin E: normal diet, using half 25-(OH)D3 as a source of vitamin D3 and an additional 60 IU of vitamin E: 25-(OH)D3+VE diet) and two stocking densities (high density of 20 chickens/m2: HD and 16 chickens/m2: LD). The experiment lasted for 42 d. The results showed that high-density stocking negatively affected the growth performance of broilers during the first four weeks, whereas the vitamin diet treatment significantly improved the feed conversion ratios (FCR) during the last 2 wk. Vitamin diets increased catalase at 14 and 42 d, and the glutathione peroxidase (GSH-px) levels at 42 d in high-density-stocked broilers. The interaction showed that serum vitamin E levels were significantly improved at 28 d of age in high-density-stocked broilers as a result of the vitamin diets. Stocking density and dietary treatments were found to significantly affect bone development, with the vitamin diet significantly increasing metatarsal length and femoral bone strength in broilers from high-density stocking density at 28 d of age. High stocking density increased the proportion of leg muscles and meat yield per square meter. In general, 25-(OH)D3 and additional vitamin E suppressed oxidative stress and ameliorated the negative effects of high-density stocking on bone development in a commercial chicken farm setting. Vitamin diets improved the FCR of broilers, while high-density stocking resulted in better economic outcomes.


High-density stocking is often associated with animal welfare risks in broilers, mainly in terms of oxidative stress and bone development. Nevertheless, farming at too low a density remains for the most part economically unviable. Modulation of antioxidant capacity and bone development by nutritional strategies in high-density-farmed broilers has proven an effective tool in developing countries. Therefore, the present study investigated the effects of applying diets with a higher biological potency of vitamin D3 25-hydroxycholecalciferol [25-(OH)D3] and a higher concentration of vitamin E on broiler production performance, antioxidant capacity and meat production performance at different densities of stocking under commercial farming conditions. The results indicated that the vitamin dietary treatments suppressed oxidative stress and ameliorated the negative effects of high-density farming on bone development.


Assuntos
Calcifediol , Galinhas , Animais , Calcifediol/farmacologia , Galinhas/fisiologia , Antioxidantes , Vitamina E/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Vitaminas/farmacologia , Colecalciferol , Desenvolvimento Ósseo , Ração Animal/análise
18.
Mol Genet Genomics ; 298(6): 1545-1557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910265

RESUMO

Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.


Assuntos
Lilium , Lilium/genética , Lilium/metabolismo , Antocianinas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma/genética
19.
Sci Rep ; 13(1): 18727, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907515

RESUMO

The existing biomarkers are insufficient for predicting the prognosis of pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary mucinous neoplasm (IPMN) is a precursor to PDAC; therefore, identifying biomarkers from differentially expressed genes (DEGs) of PDAC and IPMN is a new and reliable strategy for predicting the prognosis of PDAC. In this study, four datasets were downloaded from the Gene Expression Omnibus database and standardized using the R package 'limma.' A total of 51 IPMN and 81 PDAC samples were analyzed, and 341 DEGs in PDAC and IPMN were identified; DEGs were involved in the extracellular matrix and tumor microenvironment. An acceptable survival prognosis was demonstrated by SDC1 and ITGA2, which were highly expressed during in vitro PDAC cell proliferation, apoptosis, and migration. SDC1high was enriched in interferon alpha (IFN-α) response and ITGA2high was primarily detected in epithelial-mesenchymal transition (EMT), which was verified using western blotting. We concluded that SDC1 and ITGA2 are potential prognostic biomarkers for PDAC associated with IPMN. Downregulation of SDC1 and ITGA2 expression in PDAC occurs via a mechanism involving possible regulation of IFN-α response, EMT, and immunity, which may act as new targets for PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Sindecana-1/genética , Microambiente Tumoral , Neoplasias Pancreáticas
20.
Anim Nutr ; 15: 297-306, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033609

RESUMO

Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals. The effects of glycerol monolaurate (GML) on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model. Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups. On embryonic day 17.5, the broiler embryos were administered with 9 mg of GML, which was followed by a 12-h incubation period and a 12-h challenge with 32 µg of lipopolysaccharide (LPS). On embryonic day 18.5, the jejunum and ileum were harvested. Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2 (P < 0.05). GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity (P < 0.05). GML alleviated LPS-stimulated intestinal secretion of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) (P < 0.05). GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4, nuclear factor kappa-B p65 (NF-κB p65), cyclooxygenase-2, NOD-like receptor protein 3, IL-18, zonula occludens 1, and occludin (P < 0.05). GML enhanced as well the expression of AMP-activated protein kinase α1 and claudin 1 (P < 0.05). In conclusion, GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...